手机版
您的位置: 首页 > 生活常识 >

0的倒数是多少呢?(0改变了生活,却阻碍了思维)

100次浏览     发布时间:2024-09-07 09:46:36    

“0”在我们日常生活和学习中习以为常,天天可见又离不开它。离开了“0”,数量就无法运算,人们生活都无法交流。尤其是我们的自然科学就无从谈起,整个当代科学大厦就会轰然倒塌。提岀这个问题有意义吗?仔细想想,对认识是有重要意义的。

0,顾名思义,即:“无、空”,用我们的话说,什么都没有。

0,既然什么都没有,那为什么还要0呢?阿拉伯人发明了数,印度人发明了0。由于0的发明,阿拉伯数字才可进行四则运算。数与自身相减为0,这是四则运算的结果。0的倒数为无穷大(即0除以任何数为无穷大;无0,也没有无穷大)。由此可见,没有0,数量的四则运算寸歩难行。

显然,0在数量中有重要意义。 那么,从物质世界怎样去找0呢?

物质可以用1、2、3、…等数量对应和表述(这种对应与表述是否准确,不是本文讨论的内容,我们在另外的文章中再阐述),但绝对找不到“0物质”。换句话说,0不对应任何物质,也就不存在0物质。数字引入0,其目的是为了进行加减乘除等形式逻辑演绎。但恰恰是这个不存在,又不起眼的0,将当代科学带入了一个形式逻辑的歧途,而使我们所学的科学知识不切合实际,在日常生活中也用不上。

所以,数量“0”给我们带来的谬误有多深,下面略举一二:

如果没有0,物质就是有结构的物质;如果没有0,物质就处于不断的变化之中;如果没有0,就不存在“无穷”,符合老子“远曰返”的宇宙结构观;如果没有0,物质就不断创生和湮灭。(但创生不会出现无穷,湮灭不会趋于物质消失)。

如果没有0,形式逻辑寸步难行;微积分失去意义;没有0曲率的物质,平面几何仅仅只是思维游戏;如果没有0,整个数量科学或者说当代科学都会瘫痪或者轰然倒塌……

为了进一步理解这个问题,再举一个具体的物质相减的例子。

假设一颗苹果树上有一个苹果,我们将它摘掉,我们就说,这颗苹果树上的苹果为0,即自身减去自身,这是符合数量的运算规则的(作为互相交流是没错的)。但仔细的考察,具体物质对应的减法与数量的减法是有区别的,即具体的物质苹果的减法是两个“比较接近”时间的“两个”苹果的减法,即物质苹果在时间上是变化的,“自身相减”是不为0的。而数量是没有时间变化的,所以,自身相减为0。且这个例子对于物质而言是有普遍意义的。所以,数量的四则运算与具体物质的四则运算不是一一对应的。即在物质世界是找不到0物质。

老子的“万物生于有,有生于无。”于是,0定义为“无、空”,即不是道家所言的无,即不是物质意义的无。而物质意义的“有、无”观,是一种转化观。

因此我告诉你,0不存在,或者我们是生活在一个没有零物质的世界里,你肯定会反对;不过,这没有关系,因为它丝毫不防碍我们日常吃饭和生活,就当是神话吧。


相关文章

  • 2025-04-19 15:55:35
  • 2025-04-19 11:58:43
  • 2025-04-19 07:02:56
  • 2025-04-19 06:03:58
  • 2025-04-19 00:58:32
  • 2025-04-18 13:44:45
  • 热门文章
    义务兵退伍贷款怎么贷?超详细申请攻略
    新婚姻法离婚财产分割有什么规定
    省委书记多少岁退休 ?看完你就知道了
    医疗机构执业许可证的申请条件是哪些?
    产假和陪产假是什么?一起来看看吧
    【政策解读】投标人公平竞争原则的重要性
    什么是倾销?反倾销调查:我国连续23年位居榜首,为什么中国企业备受打压?
    消费者保障服务 :构建和谐市场的关键"
    老人过世了,房产如何继承过户?教给你3个步骤,4种方法
    二手房过户手续费需要交哪些
    最新文章
    为什么植物叶子变黄(植物黄叶90%死于这个原因!)
    1. 浇水太多。叶片发黄发软,根系可能已经烂了。记住:宁可渴着,不要涝着。2. 光照不足。叶片失去光泽,慢慢发黄。特别是夏天,很多绿植都需要散射光。3. 营养不良。从老叶开始泛黄,新叶也无精打采。记得定期施肥,补充营养。4. 温度不适。忽冷忽热,空调直吹,都会导致叶片发黄脱落。记得远离冷暖气出风口。
    · 为什么植物叶子变黄(植物黄叶90%死于这个原因!)
    · 为什么圆床很少人用(以前很流行的“圆形床”,为何如今销声匿迹?)
    · 屋子里为什么有蟑螂(远离蟑螂侵扰,拥有健康家庭)
    · 新房为什么要装修才交付(没交房到底要不要看装修?这7点你要知道)
    · 昙花为什么不开花适宜温度多少(昙花怎么养才能开花)
    · 为什么有电流声音(在安静的环境中耳朵经常听到的电流声?)
    · 资金产品是什么(图解支付平台资金产品设计)
    · 什么样的投资好(人生最好的投资,往往是指这3种)

    网站内容来自网络,如有侵权请联系我们,立即删除!
    Copyright © 恩格百科 琼ICP备2023007320号-5